International Conference on

Structural and Civil Engineering Research

Theme: Exploring latest Innovations & Modern trends in Structural and civil Engineering
Abstract Submission and Registration Open Now

Event Date & Time

Event Location

Dubai, UAE

18 years of lifescience communication


Previous Conference Performers / Professionals From Around The Globe

Conference Speaker

Achintya Haldar

University of Arizona,Tucson,AZ,USA

Conference Speaker

Merita Guri

Polis University,Albania

Conference Speaker

Jiang kaiyu

Southeast University,China

Conference Speaker



Conference Speaker


Kyushu Institute of Technology Japan

Conference Speaker

Arjana Hasani

Polish University, Albania

Conference Speaker


Cairo University Egypt

Conference Speaker

Aguljeln Marku

POLIS University, Albania

Conference Speaker

Ekin Ozer

Middle East Technical University Turkey

Conference Speaker

Massimiliano Nastri

Polytechnic University of Milan Italy

Conference Speaker

Piero Colajanni

University of Palermo Italy

Conference Speaker

Waltraud M. Kriven

University of Illinois at Urbana-Champaign USA

Tracks & Key Topics

civilengineering 2020


The International Conference on Structural and Civil Engineering Research (CIVIL ENGINEERING 2019) hosted through EuroSciCon took area at Holiday Inn, Paris, France all through June 06-07, 2019. It was once organized via EuroSciCon and generous response used to be obtained from the Editorial Board Members of EuroSciCon Journals as well as from eminent scientists, gifted researchers, and young scholar community. Researchers and students who attended from one of a kind parts of the world made the convention one of the most successful and productive activities in 2019 from EuroSciCon. The two-day application witnessed thought-provoking keynote and plenary presentations from professionals in the subject of Structural and Engineering Research, highlighting the theme, "Engineering for Sustainable Infrastructure & Development ".

The meeting used to be carried out through a number sessions, in which the discussions have been held on the following major scientific tracks:

The highlights of the meeting were from the eminent keynote lectures from:

Civil Engineering 2019 Conference performed a vital role in promoting multidisciplinary interactions between Structural and Civil Engineering Research to decorate lookup in Civil Engineering. The software covered cutting-edge and emerging lookup innovations in the discipline of Civil Engineering.

We would mainly thank our Moderator for his contribution to the conference.

We definitely thank the Organizing Committee Members and the Editorial board of Civil Engineering 2019 Conference for their gracious presence and continuous aid for the duration of the lawsuits of this event. With the precious feedback and beneficent response obtained from the contributors of the event, EuroSciCon would like to announce the commencement of “International Conference on Structural and Civil Engineering Research” at some stage in April 22-23, 2020,  Dubai, UAE with the theme: “Exploring latest Innovations & Modern trends in Structural and civil Engineering".

Let us meet once more @ Civil Engineering 2020



For the benefit of the Structural and Civil Engineering Research 2020 Organizing Committee, we anticipate inviting you to Dubai, UAE. The world focused on the field of Civil and Structure Engineering, this is your most opportunity to accomplish the greatest gathering of individual from the overall advancement undertakings. With the members from around the globe focused on learning about recent and advanced Civil Engineering Researches.

Coordinate shows, fitting information, meet with present and potential steel merchants, make a sprinkle with another item offering, and get name affirmation at this 2 days event. Unbelievably renowned speakers, the most recent techniques, systems, and the most current updates in Structural and Civil Engineering fields are indications of this social occasion.

It will provide scope to student to meet and interact with international speakers and professors, CEOs. This meeting joins masters, researchers, analysts and understudies from all locales of Civil Engineering, Architectural, and Structural Engineering and other related civil engineering affiliations, steel merchants, building and improvement specialists, Developers, Contractors, Interior Design, Consultancy, Building Material creators of national importance. The Organizing Committee ceaselessly attempts to make what we believe is a remarkable specialized program at an extraordinary esteem.


We believe you will present a theoretical displaying of your most recent research or undertaking victories, and that you will take full preferred standpoint of the specialized sessions exhibited by your associates who have as of now liberally volunteered their chance and ability. This is likewise your chance to interface with condition of-the-hone experts and to reconnect with your companions and associates. Set aside opportunity to survey the Advanced Program. You'll see that the 2020 Conference program will offer new and improved proficient tracks, board discourses and superb keynote speakers and arranged strolling visits, among different exercises.

Much thanks to you for taking an interest in the Structural and Civil Engineering Resaerch 2020We anticipate your introductions and comrade. We hope to see you at Dubai,UAE.



About Conference

EuroSciCon warmly welcomes to all the experts in the field of Structural and Civil Engineering to attend its upcoming conference on Structural and Civil Engineering Research, to be held during April 22-23, 2020 Dubai,UAE. The Conference is based on the Theme: Exploring latest Innovations & Modern trends in Structural and civil Engineering. Civil Engineering 2020 Conference will make the perfect platform for global networking as it brings all together speakers, renowned speakers, business persons , CEO’s , across the globe to most exciting and memorable event ,with interactive sessions, poster presentation, world class exhibition.  Advances in the field of Construction and Structures are one of the crucial factors in the economic powers of the developed countries and developing countries.

This is 2-days Meeting and you can participate in a number of educational formats including General Sessions, Poster Presentations, and Workshops/Symposium, Meet-the-Professor Sessions, Oral Presentations and other interactive and informal exchanges.

We hope you to see in Structural and Civil Engineering Research 2020 at Dubai,UAE


For Researchers & Faculty:

  • Speaker Presentations
  • Poster Display
  • Symposium hosting
  • Workshop organizing

For Universities, Associations & Societies:

  • Association Partnering
  • Collaboration proposals
  • Academic Partnering
  • Group Participation

For Students & Research Scholars:

  • Poster Competition (Winner will get Best Poster Award)
  • Young Researcher Forum (YRF Award to the best presenter)
  • Student Attendee
  • Group registrations

For Business Delegates:

  • Speaker Presentations
  • Symposium hosting
  • Book Launch event
  • Networking opportunities
  • Audience participation

For Companies:

  • Exhibitor and Vendor booths
  • Sponsorships opportunities
  • Product launch
  • Workshop organizing
  • Scientific Partnering
  • Marketing and Networking with clients

EuroSciCon organizes International Civil Engineering Meetings annually across Europe, Austria, Ireland, Germany, France, Liechtenstein, Lithuania, Finland, Luxembourg, Hungary, Italy, Norway, Poland, Denmark, Macedonia, Greece, Portugal, Romania, Czech Republic, Switzerland, United Kingdom, Belgium, Scotland, Latvia, Ukraine, Sweden, Denmark, Spain, Netherlands Russia, Bulgaria, France, with solitary subject of quickening logical revelations.


Civil Engineering and Architecture

Structural and Construction Engineering

Building Technology and Construction Management

Steel Structures and Construction

Structural Analysis and Designing

Structural Health Monitoring

Reinforced Concrete Structure

Modular Constructions

Earthquake Engineering and Seismic Risk Mitigation

Transportation and Traffic Engineering

Pavement Design

Environmental Engineering

Water Resource Engineering and Technology

Geotechnical Engineering

Sustainability & Green Structures

Materials Science and Engineering

Tunnel Engineering and Construction

Automation in Construction

Designing of Special Structures and Concrete Technology

Construction Market Research and Industry Analysis

Who should attend?

Engineers who are specialized  on the specific fields like Civil engineers, Structural Engineers, Mechanical Engineers (To Present Their case reports and to update their Knowledge at the conference), Civil industry professionals, Building services engineer, Building control surveyor, Environmental engineers who are related to that topics. Bridge Construction Industries, Renewable Energy Industries, Software Publishing Houses specializing in Construction Design software’s are the Potential Exhibitors for the Respective Conferences. Associations, Earthquake Engineering Research Institutes,Institutions of Civil Engineering Surveyors, Institutions of Transportation Engineers; Students and Delegates in related areas.

Why to attend??

With members from around the world focused on the field of Civil Engineering; this is your single best opportunity to reach the largest assemblage of participants from the global Civil Engineering Industries. Conduct demonstrations, distribute information, meet with current and potential civil traders, make a splash with a new product line, and receive name recognition at this 2-days event. World-renowned speakers, the most recent techniques, tactics, and the newest updates in Civil Engineering fields are hallmarks of this conference. Conference brings together experts, researchers, scholars and students from all areas of Civil Engineering, Architectural, Structural Engineering, Geo-Technical, Environmental  and other related areas, Civil associations, civil traders, building and construction professionals, Developers, Contractors, Interior Design, Consultancy, Building Material manufacturers.

About Dubai:

Dubai is a city in the United Arab Emirates, located within the emirate. The emirate of Dubai is located on the southeast coast of the Persian Gulf and is one of the seven emirates that make up the country. Abu Dhabi and Dubai are the only two emirates to have veto power over critical matters of national importance in the country's legislature. The city of Dubai is located on the emirate's northern coastline and heads up the Dubai-Sharjah-Ajman metropolitan area.

 Dubai has a fascinating history and a vibrant heritage that provides visitors an intriguing glimpse into Arabian culture.  A place to start exploring the heritage and history of Dubai is the Dubai Museum: it’s located inside the Al Fahidi Fort, one of the Dubai’s oldest buildings dating back to 1787.

Glitzy Dubai is the United Arab Emirates holiday hot spot. This city of high-rises and shopping malls has transformed itself from a desert outpost to a destination du-jour, where tourists flock for sales bargains, sunshine, and family fun. Dubai is famous for sightseeing attractions such as the Burj Khalifa (the world's tallest building) and shopping malls that come complete with mammoth aquariums and indoor ski slopes. But this city has many cultural highlights and things to do as well as all the glamorous modern add-ons. Take a wander around the Bastakia district, and you'll discover the Dubai of old, then cruise along Dubai Creek in a traditional dhow and you'll soon realize there's more to this city than its flashy veneer.



Session and Tracks

Track 1Civil engineering

Civil engineering is a specialist engineering and it deals with the construction, design, and maintenance of the naturally and physical built environment, including works such as bridges, airports,  roads, dams, canals, railways ,sewerage systems and pipelines. Civil Engineering is the one of the ancient Engineering.

In Civil Engineering construction, design, supervision, operation and maintenance of  large construction projects and systems, including high-rise buildings, metro and mono railways subway station, roads, harbors, airports, tunnels, bridges, dams, sewage and water supply system.


  • Transportation Engineering
  • Earthquake Engineering
  • Environmental Engineering
  • Geotechnical Engineering
  • Coastal Engineering
  • Water Engineering
  • Construction Engineering and Architecture
  • Bridge and Tunnel Engineering

Track 2: Structural and Construction Engineering

Structural engineering is bothered with the structural define and structural examination of structures, spans, towers, flyovers (bridges), burrows, seaward structures like oil and gas fields within the ocean, aero-structure and totally different structures.

This includes distinguishing the heaps which follow up on a structure and the powers and what's more, stresses which develop inside that structure in light of those loads and a short time later planning the structure to viably bolster and restrict those piles. The heaps can act naturally weight of the structures, other dead load, live loads, moving (wheel) stack, wind stack, tremor stack, stack from temperature change and so forth.

The structural designer should define structures to be safe for his or her purchasers and to effectively satisfy the capability they're meant for (to be useful).

As a result of the possibility of some stacking conditions sub educates inside auxiliary designing have risen, including wind engineering and seismic tremor engineering.

plan contemplation will consolidate quality immovability and quality of the structure when subjected to loads which might be static, for example, furniture or self-weight, or dynamic, for example, wind, seismic, Group or vehicle hundreds, or momentary, for example, transitory development loads or effect.

Different concerns incorporate value, construct-ability, safety, vogue and property.


  • Energy Efficiency in Buildings
  • Special Concrete
  • Bridge and Tunnel Engineering
  • Green Structure Materials
  • Structural Health Monitoring and Analysis
  • Management in Construction
  • Computational Mechanics

Track 3: Environmental and Ecological Engineering

Environmental engineering is the branch of engineering that is worried about shielding individuals from the impacts of unfavourable environmental impacts, for example, contamination, and additionally enhancing environmental quality. Environmental specialists work to enhance reusing, squander transfer, and water and air contamination control.

Ecological engineering uses ecology and engineering to predict, design, construct or re-establish and oversee biological systems that incorporate human culture with its common habitat for the benefit of both.


  • Water Engineering
  • Waste Water Treatment and Management
  • Biomass Technologies
  • Sewer Service
  • Fire protection Engineering
  • Ecological Engineering
  • Climate Control in Buildings

Track 4: Architecture and Infrastructure Design

Architecture is the process and the result of arranging, planning, and developing structures or some other structures. Architecture is basically the examination that manages the way toward structuring.Architecture is basically the examination that manages the way toward structuring. Architecture is essentially the study that deals with the process of designing and erecting structures.

It is not limited to just construction but is a combined discipline that is inter related to the making, functioning, and aesthetics of built environments.A building work as a way of communication between man and nature, architecture is the study that emphasizes on amplifying this medium.

Architecture provides the soul to any city, country or continent. It is based on deriving from the rich history of our ancestors and applying it to create more functional and comfortable habitats for the human race.

Architecture is the art and the science behind any constructions.


  • Architecture and Urban Planning
  • Bridge design and Construction
  • Gothic Architecture
  • Ancient Architecture
  • Concrete Steel and Glass Structure
  • Fatigue in large Consturction

Track 5: Geotechnical Engineering

Geotechnical Engineering is a part of structural engineering worried about the engineering behaviour of earth materials. Geotechnical building consolidates examining existing subsurface conditions and materials, reviewing threats introduced by site conditions, planning earthworks and structure establishments, and checking site conditions, earthwork and foundation development.

A typical geotechnical engineering project starts with a site investigation of soil and bedrock on and underneath a zone. Examinations can consolidate the assessment of the danger to people property and the earth from common perils, for example, earthquakes, landslides, sinkholes, soil liquefaction flotsam and jetsam streams and shake falls. Foundations are outlined and built for structures of different sizes, for example, raised structures spans medium to colossal business structures and more diminutive structures where the soil conditions don't permit code-based plan. Establishments worked for over the ground structures consolidate shallow and significant foundations. Holding structures join earth-filled dams and holding dividers. Earthworks incorporate banks, burrows, levees, channels, repositories, testimony of dangerous waste and sterile landfills.

Geotechnical engineering is additionally identified with coastal and ocean engineering. Coastal engineering can include the plan and construction of wharves, marinas, and jetties. Sea designing can incorporate foundation and stay systems for seaward structures, for instance, oil stages.


  • Geohazrds: Analysis, mitigation and management
  • Computational Geo-mechanics and geotechnical modelling
  • Retrofitting strategies for geotechnical structures
  • Geosynthetics
  • Soil Mechanics
  • Uncertainties, risk and reliability geotechnical engineering
  • Forensic geotechnical engineering
  • Sustainable geotechnics
  • Geo-environmental engineering

Track 6: Steel Structure

A structure which is assembled from various steel members of sundry shapes and sizes and connected together by bolting or welding or riveting and performs some function, and safely wear  the loads it is subjected to is called a Steel structure.

These could be tall transmission towers, chimneys, bridges, Industrial buildings, sheds, cranes, silos, bunkers, oil or gas storage tanks, pipe stockades, tall residential building frames, walkways, Railway over-bridges, Railway platform or bus stand shelters, or stadium roofs or utterly simple and common structures like hand railings, balustrades, ladders, stairs, lamp posts, bollards, flag hoisting poles, Electric poles and the like.


  • Non-Structured Steel
  • Cold formed Steel
  • Material Quality and control
  • High performance basic steel
  • Sustainable Steel Structure
  • Advance sustainable Material
  • Future trend in Steel Structure
  • Composite Construction
  • Advance Sustainable Material

Track 7: Building technology and Construction Management

Term 'Building technology' refers to the technical processes and methods used in the constructing buildings. This has become an increasingly important aspect of the construction industry, as buildings have moved from being evolution of standard types to becoming one-off prototypes, building performance requirements have become more demanding, and the number of products and specialist suppliers has increased.

Construction management is the process of planning, coordinating, providing monitoring and controlling of a development venture. This style of project management is designed for the, as the name implies, construction industry. There are some types of construction that use management; they are industrial, civil, commercial, environmental and residential. Each category has its own way of running projects, but all will follow the construction management methodology.

Construction management has five stages, where project management has five phases. The stages are design, procurement, build, and owner occupancy.


  • Heavy equipment operations
  • Design of structures
  • Construction engineering practices
  • Construction and contract management
  • Computational laboratory for construction management

Track 8: Structural Analysis and Designing

Structural analysis is done by a testing of the genuine structure, on a model of the structure made on some scale, and by the use of numerical models. Tests are directed on the genuine structure when creation is expected of comparable structures in expansive amounts, similar to edges of a specific auto, or when the test costs are satisfactory because of the noteworthiness of the assignment. At the point when components of the primary structures are to be inspected, at that point models are utilized for the estimation of the diverse burdens to be persevered. Most auxiliary investigations are directed on the scientific models, in which the model could be  inelastic, loads might be static or dynamic, and the model of the structure may be two dimensional or three dimensional. Structural analysis is an essential subject of structural designing that evaluates the individual loads on structures, and their effects. It is an exact technique to learn the ability of the structures to withstand the normal loads, and help with planning the structures in like manner.


  • Methods using numerical approximation
  • Elasticity Methods
  • Strength of Materials Methods
  • Analytical Methods and Limitations
  • Classification of Structures
  • Structures and Loads

Track 9: Material science and Engineering

Materials science is firmly identified with civil engineering. It examines crucial qualities of materials, and manages earthenware production, for example, cement and blend black-top concrete, solid metals, for example, aluminium and steel and thermosetting polymers including polymethylmethacrylate (PMMA) and carbon fibres. Materials engineering includes protection and prevention (paints and wraps up). Mixing joins two kinds of metals to create another metal with desired properties. It consolidates components of connected material science and science. With late media consideration on Nano-science and nanotechnology, materials engineering has been at the bleeding edge of academic research. It is additionally a significant piece of forensic engineering and failure analysis.


  • Computational science and theory
  • Biomaterials
  • Electronic, Optical and Magnetic
  • Nanomaterial
  • Nanotechnology

Track 10: Structural Health Monitoring

Structural health monitoring (SHM) alludes to the way toward executing a damage detection and portrayal technique for designing structures. Here damage is specify as changes to the material or potentially geometric properties of a structural framework, including changes to the limit conditions and framework availability, which adversely influence the framework's execution. The SHM procedure includes the perception of a framework after some time utilizing intermittently tested dynamic reaction estimations from a variety of sensors, the extraction of harm delicate highlights from these estimations, and the factual testing of these high point to decide the present condition of framework health. For long term SHM, the yield of this procedure is intermittently refreshed data with respect to the capacity of the structure to play out its expected capacity in light of the inescapable maturing and degradation coming about because of operational conditions. After remarkable instance, for example, seismic tremors or impact stacking, SHM is utilized for quick condition screening and intends to give, in close constant, solid data with respect to the uprightness of the structure. Foundation investigation assumes a key job out in the open wellbeing with respect to both long haul harm amassing and post extraordinary occasion situations. As a feature of the quick improvements in information driven advances that are changing numerous fields in building and science, machine learning and PC vision methods are progressively prepared to do dependably diagnosing and arranging designs in picture information, which has clear applications in review settings.


  • Statistical model development
  • Feature extraction and data compression
  • Data acquisition, normalization and cleaning
  • Operational Evaluation
  • Health assessment of engineered structures
  • Statistical pattern recognition

Track 11: Reinforced Concrete Structure

Reinforced concrete is the concrete in which steel is inserted in such a way, to the point that the two materials act together in opposing powers. The reinforcing steel—bars, bars, or work—ingests the tractable, shear, and now and again the compressive stresses in a concrete structure. Plain concrete does not effectively withstand ductile and shear stresses caused by wind, tremors, vibrations, and different powers and are in this way inadmissible in most basic applications. In reinforced concrete, the rigidity of steel and the compressive quality of concrete collaborate to enable the part to control these stresses over significant ranges. The innovation of reinforced concrete in the nineteenth century altered the development business, and concrete wound up one of the world's most normal building materials.


  • Fibre-Reinforced Concrete
  • Pre-stressed Concrete
  • Non-Steel Reinforcement
  • Anti-corrosion measure
  •  Reinforced beams
  • Common failure model of steel Reinforced concrete
  • Steel plate construction
  • Mechanism of composite action of Reinforced and concrete
  • Anchorage(bond) in concrete: code of specification

Track 12: Earthquake Engineering and Seismic Risk Mitigation

Earthquake engineering is an interdisciplinary branch of engineering that outlines and examinations structures, for example, buildings and bridges, in view of earthquakes. Its general objective is to make such structures more impervious to earthquakes. An earthquake (or seismic) build means to develop structures that won't be harmed in minor shaking and will stay away from genuine harm or crumple in a noteworthy earthquake. Earthquake engineering is the logical field stressed about securing people, the indigenous habitat, and the man-made condition from earthquakes by constraining the seismic hazard to socio-monetarily worthy levels. Customarily, it has been barely characterized as the investigation of the conduct of structures and geo-structures subject to seismic stacking; it is considered as a subset of structural engineering, geotechnical engineering, mechanical engineering, chemical engineering, applied physics, and so on. In any case, the tremendous costs experienced in late earthquakes have prompted a progress of its extension to include disciplines from the more extensive field of structural engineering, mechanical engineering and from the social sciences, especially sociology, political science, economics and finance.


  • Earthquake Seismology and Earthquake Hazard
  • Catastrophe Risk Modelling
  • Design and Analysis of Structural System
  • Finite Element Modelling and Numerical Methods
  • Natural and Environmental Disaster
  • Integrating Science into Disaster Risk Reduction
  • Advance Structures
  • Project Management

Track 13: Transportation and Traffic Engineering

Transportation building is a sub-control of structural building which manages the use of innovation and logical standards to the arranging, useful plan, activity and administration of offices for any method of transportation with the end goal to give the protected, fast, agreeable, advantageous, temperate, and earth perfect development of individuals and merchandise (transport).

 According to American Society of Civil Engineers (ASCE), there are six divisions identified with transportation designing i.e. Parkway, Air Transportation, Pipeline, Waterway, Port, Aerospace, Coastal and Ocean and Urban Transportation out of 18 specialized divisions inside the ASCE

Car frameworks can be part into the conventional zone of roadway structure and arranging, and the quickly developing region of movement control frameworks. The transportation build faces the test of creating both system connections and real terminals to fulfil transportation requests, with due respect for the resultant land-utilize, natural and different effects of these offices.


  • Transportation and Urban Planning
  • Highway Engineering
  • Pavement Engineering
  • Bicycle Transportation Engineering
  • Airport engineering
  • Port and Harbor Engineering
  • Macroscopic Mesoscopic Traffic flow Modelling
  • Intelligent Transportation System
  • Traffic system Design and Control

Track 14: Water Resources engineering and technology

Water resources engineering and technology experts study and make recommendations on new water treatment facilities, reactors, pumping stations, waste frameworks and pipelines. Water resources engineering and technology is an area of study within the engineering sciences managing the hydraulic and fluid mechanics standards behind water distribution, flow and manipulation. Water resources engineers outline and actualize water frameworks. The design may target around hydraulics system, pipelines and research facility tests, while the execution may deal with flood damage, wastewater transfer and consumable water distribution, potable water distribution and reclamation, environmental change examination, aquifer stockpiling and recuperation and surface/groundwater connection.


  • Water Resources Planning and management
  • Groundwater Engineering
  • Coastal Engineering
  • River Engineering
  • Hydraulic Engineering
  • Advance Fluid Mechanics
  • Pollution and Water protection
  • Frozen and Surface Water

Track 15: Sustainability and Green Building

Green building also called green development or Economical structures refers to both a structure and the utilization of procedures that are ecologically responsible and resource efficient all through a building's life-cycle: from intending to outline, development, task, support, remodel, and demolition. This requires close cooperation of the contractor, the engineers, the architects, and the customer at all venture stages. The Green Building practice develops and additives the established building configuration concern of economy, utility, comfort and resilience.

Leadership in Energy and Environmental Design is an arrangement of rating frameworks for the outline, development, activity, and maintenance of green buildings which was Developed by the U.S. Green Building Council. Different authentications framework that affirms the supportability of structures is the (British Building Research Establishment Environmental Assessment Method) for buildings and large-scale advancements. As of now, World Green Building Council board is leading research on the impacts of green buildings on health and productivity of their clients and is working with World Bank to advance Green Buildings in Emerging Markets through EDGE (Excellence in Design for Greater Efficiencies) Market Transformation certification and program.


  • Operation and Maintenance Optimization
  • Indoor Environment Quality Enhancement
  • Energy water and material Efficiency
  • Life Cycle Assessment
  • Siting and Structure Design Efficiency
  • Protect biodiversity and ecosystems
  • Waste Reduction
  • Reduce impact onto electricity network
  • Improve air and water quality

Track 16: Tunnel Engineering

Tunnels are dug in sorts of materials fluctuating from delicate mud to hard shake. The technique for burrow development relies upon such factors as the ground conditions, the ground water conditions, the length and distance across of the passage drive, the profundity of the passage, the coordination of supporting the passage removal, the last use and condition of the entry and appropriate peril organization.

There are three basic kinds of tunnel construction in common use:

Cut-and-cover tunnel, Bored tunnel, developed in situ without evacuating the ground above. They are for the most part of roundabout or horseshoe cross area.Immersed tube tunnel, sunk into a body of water and laid on or buried just under its bed.


  • Sprayed concrete techniques
  • Project Planning and Cost Estimates
  • Choice of tunnels Versus Bridges
  • Geotechnical Investigation and Design

Track 17: Pavement Design

A highway pavement is a structure comprising of superimposed layers of handled materials over the common soil sub-review, whose primary function is to convey the connected vehicle burdens to the sub-review. The pavement structure ought to have the capacity to give a surface of satisfactory riding quality, sufficient slip opposition, great light reflecting characteristics, and low commotion contamination. a complete point is to ensure that the transmitted anxieties as a result of wheel load are adequately diminished, so that they will not exceed bearing capacity of the subgrade.

Two sorts of pavements are by and large perceived as filling this need, specifically flexible pavements and rigid pavements. Improper design of pavements prompts early failures of pavements influencing the riding quality.


  • Traffic management systems
  • Pavement Management System
  • Cold and warm mix Technology
  • Bituminous Pavement Design
  • Advances in Concrete Pavement Construction
  • Advances in Bituminous Pavement Construction
  • Characterization of Bituminous Binder and Mixers
  • Rigid and Flexible Pavements

Track 18: Modular Construction

Modular construction is a term used to portray the utilization of processing plant created pre-designed building units that are transferred to site and stored as huge volumetric parts or as generous components of a building. The modular units may frame finish rooms, parts of rooms, or separate much adjusted units, for example, toilets or lifts. The accumulation of discrete modular units more often than not shapes a self-supporting structure in its own particular right or, for large structures, may rely on an autonomous basic system.

  • The main sectors of application of modular construction are:
  • Private housing
  • Social housing
  • Apartments and mixed use buildings
  • Educational sector and student residences
  • Key worker accommodation and sheltered housing
  • Public sector buildings, such as prisons and MoD buildings
  • Health sector buildings
  • Hotels

Track 19: Automation in construction

The construction Industry is one of the biggest industries in the world, in spite of its massive potential; many industries are struggling due to a lack of qualified workers, weak productivity growth, and new data showing that the industry generates immense waste, both in Case of productivity of human and physical materials. Today’s proponents of technology have aimed to a shortage of automation and adoption of technology as the basic reasons for the industry’s poor performance – construction business is one of the minimum digitized business in the  world, and has failed to significantly increase the productivity of worker in decades.

The successful use of automation is one of the greatest opportunities, as well as one of the greatest problems, facing the construction business. The various element of an automation strategy, as considered in this paper, are computer-aided engineering and design (CAE/CAD), computerized data bases, response of as-built data, automated materials handling, artificial intelligence, and robotics etc.


  • Artificial Intelligence
  • Automation of Prefabricated Home Construction
  • Monitor Inventory
  • Drones used to conduct site Inspection

Track 20: Special Structure Design & Concrete Technology

Concrete Technology points on concrete making substances including supplementary cementitious substances. Concrete generation process additionally forms a piece of the discourse. Encountering the course one would become direct learning on solid age process and properties and employments of concrete as a cutting edge material of development. This technology empowers one to settle on proper choice with respect to fixing choice and utilization of concrete. Strengthened cement is a composite material in which cement's by and large low solidness and pliability are removed by the mix of fortification having higher flexibility or versatility. The fortress is ordinarily, anyway not by any stretch of the creative ability, steel reinforcing bars (rebar) and is for the most part inserted idly in the solid before the solid sets. Overseeing layouts are all around needed to confine pliable nerves particularly locale of the solid that may cause prohibited breaking and furthermore partner disappointment. present day fortified concrete can contain influenced supporting materials made of Steel, polymers or substitute composite material related to rebar or not. Strengthened cement may in like way be forever worried (in weight), to overhaul the direct of the last structure under working loads. In the United States, the most comprehensively saw frameworks for doing this are known as pre-tensioning and post-tensioning.


  • Grades and strength of concrete
  • Analysis of Wind Load
  • Design of RC Wall Tanks
  • Design of Retaining Wall
  • Design of Soil

Track 21: Construction Market Research & Industry Analysis

Construction, in the meaning of architectural and civil engineering, is the building of real property. The worldwide construction business provides a few trillion dollars. Given the measure of the market and its prospects for further extension, the construction business speaks to an alluring open way for material suppliers and segment suppliers. Basic to accomplishment in the construction business is learning of market patterns, item blend shifts, client needs and viable market procedures. Our ceaseless networking with clients, suppliers and competitors creates complete visibility across the whole value chain of the construction industry and enables our clients to settle on sure business choices. Keeping in mind the end goal to finish a construction project, a scope of variables must be considered, including planning, logistics, wellbeing of the construction site, building materials, public inconvenience, and environmental impact and scheduling. Different elements that ought to be considered are budgetary, design and legitimate issues, particularly since there's dependably the likelihood of a negative result amid a construction project, for example, basic fall and cost overwhelms. Other than contractual workers, different gatherings of professionals can meet up to perform construction work, including guides managers, construction engineers, design engineers, architects, logistics professionals, construction managers, plumbers, surveyors, electricians, laborers and skilled workers.


  • Customer Experience
  • Target Screening
  • Market Entry Strategy
  • Opportunity Screening and Analysis
  • Capital Investment Analysis
  • Due Diligence
  • Mergers & Acquisitions
  • Strategic Growth Consulting

Track 22: Geographic Information system (GIS)

GIS System is used to capture, store, manipulate, analyse, manage, and present spatial or geographic data. A software that joins the quality of cartography and databases to overlay reference information (such as number of customers or prospects residing in a locality, or the extent of soil erosion in an area) on computer-generated maps.


  • Land Surveyors
  • Spatial Analysts
  • Remote Sensing Analysts
  • Database Managers
  • Cartographers




























































The global civil engineering market size was valued at USD 7.84 trillion in 2017 and is expected to register a CAGR of 5.6% from 2018 to 2025. The market is anticipated to be driven by an expanding residential sector in the emerging economies of Asia Pacific. Rapidly rising urban population, coupled with growing need to accommodate them is a key factor boosting this market. On-going infrastructural development has also favoured the market, along with strict government regulations and rise in international investments in developing regions such as Asia Pacific and Middle East and Africa (MEA).

Global civil engineering market size, by service (2013-2025):


Regulations in Europe and North America regarding volatile organic compounds (VOC) emissions during construction processes is expected to boost demand for precast/prefabricated construction products in these regions. Companies involved in civil engineering all over the world are increasingly focusing on green building products thanks to growing awareness about the importance of eco-friendly products and energy efficiency. Introduction of new materials and technologies is expected to create lucrative opportunities for players over the next few years.

Various government regulatory frameworks, such as the International Building Code (IBC), are applied to new and existing buildings in order to track and register specific infrastructure w.r.t. government processes and control illegal and unethical construction practices.

Global civil engineering market share, by application (2017) in % (percentage):

The construction sector is a key segment within the market, driven largely by booming building and construction activities in Asia Pacific and MEA. This is supported by various international companies and associated service providers investing in these regions. India, China, Saudi Arabia, UAE, and other developing countries are expected to show significant growth in infrastructural development during the forecast period. Civil engineering is one of the most prominent and vital elements in regional development. Infrastructural development significantly depicts potential growth possibilities of any regions.



Civil Engineering Universities in Europe

Kingston University, England|University of Manchester, England|University of Aberdeen School of Engineering, Scotland|Anglia Ruskin University, England|University of Birmingham, England|University of Brighton, England|Brunel University London, England|Coventry University, England|University of Edinburgh, Scotland|Hanze University of Applied Sciences, Groningen, The Netherlands|Heriot-Watt University, Scotland|Lancaster University, England|Swansea University, Wales|University of Westminster, London|Aalborg University, Denmark|Antalya International University, Turkey|University of Bologna, Italy|Brno University of Technology, Czech Republic|Cork Institute of Technology, Republic of Ireland|Dresden University of Technology (TUD), Germany|Trinity College Dublin, Republic of Ireland|Ecole Centrale De Nantes, France|Helsinki Metropolia University of Applied Sciences, Finland|University of Liège, Belgium|University of Maribor, Slovenia|Norwegian University of Science and Technology (NTNU), Norway

Civil Engineering Universities in USA

Massachusetts Institute of Technology (MIT), United States|Virginia Tech, Blacksburg|Stanford University, Stanford|University of Texas, Austin|Georgia Institute of Technology, Atlanta|University of California, Berkeley|University of Illinois- Urbana-Champaign, Urbana|Purdue University- West Lafayette|Carnegie Mellon University, Pittsburgh|Cornell University, Ithaca|Eastern Michigan University, Ypsilanti, USA|Bowling Green State University, Bowling Green, USA|University of New MexicoAlbuquerque, USA|Massachusetts Institute of Technology, Cambridge, USA|Stanford UniversityStanford, USA|California State University Los Angeles Campus, Los Angeles|New York UniversityNew York, USA|Texas A & M UniversityCollege Station, USA|The University of Texas at ArlingtonArlington, USA|University of California (Los Angeles Campus)Los Angeles, USA|University of California (Berkeley Campus)Berkeley, USA|Purdue UniversityWest Lafayette, USA|California Institute of TechnologyPasadena, USA|Georgia Institute of Technology , Atlanta, USA|California State University Long Beach, Los Angeles, USA|Northeastern University , Boston, USA|Texas A&M University–Kingsville, Kingsville, USA|New Jersey Institute of Technology, Newark, USA

Civil Engineering Universities in Asia

The University of Tokyo, Japan|National University of Singapore (NUS), Singapore|Tsinghua University, China|Kyoto University, Japan|Tokyo Institute of Technology, Japan|KAIST – Korea Advanced Institute of Science and Technology, South Korea|Nanyang Technological University (NTU), Singapore|The Hong Kong University of Science and Technology (HKUST), Hong Kong|Seoul National University (SNU), South Korea|Shanghai Jiao Tong University, China|Peking University, China|National Taiwan University (NTU), Taiwan|University of Hong Kong (HKU), Hong Kong|Tohoku University, Japan|Osaka University, Japan|Indian Institute of Technology Bombay (IITB), India|Indian Institute of Technology Delhi (IITD), India|Zhejiang University, China|Indian Institute of Technology Madras (IITM), India|The Chinese University of Hong Kong (CUHK), Hong Kong|Pohang University of Science and Technology (POSTECH), South Korea|Indian Institute of Technology Kanpur (IITK), India|University of Science and Technology of China, China|The Hong Kong Polytechnic University, Hong Kong|Indian Institute of Science, India|National Tsing Hua University, Taiwan|Nagoya University, Japan|Harbin Institute of Technology, China|Indian Institute of Technology Kharagpur (IITKGP), India|Korea University, South Korea|Indian Institute of Technology Roorkee (IITR), India

Top Companies Associated with Civil Engineering

Major Societies and Associations around the Globe

Target Audience

Software used in Civil Engineering

Related Conferences

Related Journals

Journal of Civil & Environmental Engineering | Journal of Material Sciences & Engineering | Journal of Architectural Engineering Technology | Journal of Applied Mechanical Engineering | Journal of Aeronautics & Aerospace Engineering | Methodology of Classifying the Causes of Occupational Accidents Involving Construction Scaffolding Using Pareto-Lorenz Analysis | Sustainable Decision-Making in Civil Engineering | Construction and Building Technology | Tsallis Entropy Theory for Modeling in Water Engineering: A Review | An Integrated Numerical Model for the Design of Coastal Protection Structures | Effect of Nano-CuO on Engineering and Microstructure Properties of Fibre-Reinforced Mortars Incorporating Metakaolin: Experimental and Numerical Studies | Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers | How to Align the University Curricula with the Market Demands by Developing Employability Skills in the Civil Engineering Sector | The Gigantism of Public Works in China in the Twenty-First Century | Nonlinear Modelling of Curved Masonry Structures after Seismic Retrofit through FRP Reinforcing | Experimental Investigation of Debris-Induced Loading in Tsunami-Like Flood Events | Analysis of Cylindrical Granular Material Silos under Seismic Excitation | Using Acoustic Emission Methods to Monitor Cement Composites during Setting and Hardening | Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor | Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review | A Helicopter View of the Special Issue on Wave Energy Converters | A Two-Step Strategy for System Identification of Civil Structures for Structural Health Monitoring Using Wavelet Transform and Genetic Algorithms | Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method | Urban Resilience: A Civil Engineering Perspective | Experimental Study on Mechanical Properties and Porosity of Organic Microcapsules Based Self-Healing Cementitious Composite | Impedance-Based Non-Destructive Testing Method Combined with Unmanned Aerial Vehicle for Structural Health Monitoring of Civil Infrastructures | Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection | Strain Rate Behavior in Tension of Reinforcing Steels HPB235, HRB335, HRB400, and HRB500 | Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering | Microstructure-Based Prediction of the Elastic Behaviour of Hydrating Cement Pastes | Assessment of Changes in Flood Frequency Due to the Effects of Climate Change: Implications for Engineering Design An Experimental Study of a Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of a Long-Span Bridge | Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers | Modelling Geotechnical Heterogeneities Using Geostatistical Simulation and Finite Differences Analysis | Engineering Properties of Self-Consolidating Lightweight Aggregate Concrete and Its Application in Prestressed Concrete Members | Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete | A System-of-Systems Approach for Integrated Resilience Assessment in Highway Transportation Infrastructure Investment | Research on the Rational Yield Ratio of Isolation System and Its Application to the Design of Seismically Isolated Reinforced Concrete Frame-Core Tube Tall Buildings | Output-Based Structural Damage Detection by Using Correlation Analysis Together with Transmissibility | Toughness of Railroad Concrete Crossties with Holes and Web Openings | The Use of CFD in the Analysis of Wave Loadings Acting on Seawave Slot-Cone Generators | Deep Tunnel for Regulating Combined Sewer | Overflow Pollution and Flood Disaster: A Case Study in Guangzhou City, China | Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized | Elastic Wave Parameters | The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area | Flexural Strengthening of RC Slabs with Prestressed CFRP Strips Using Different Anchorage Systems | Engineering Behavior and Characteristics of Wood Ash and Sugarcane Bagasse Ash | Critical Data Source; Tool or Even Infrastructure? Challenges of Geographic Information Systems and Remote Sensing for Disaster Risk Governance Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate | Virtual Placements to Develop Employability Skills for Civil and Environmental Engineering Students | Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments | Effects of Biosolids and Manure Application on Microbial Water Quality in Rural Areas in the US | Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer | Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring | Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies | A Wireless Fatigue Monitoring System Utilizing a Bio-Inspired Tree Ring Data Tracking Technique | The SSG Wave Energy Converter: Performance, Status and Recent Developments | Human Health Risk Assessment of Pharmaceuticals in Water: Issues and Challenges Ahead.

Related Articles

The Total Risk Analysis of Large Dams under Flood Hazards | Long-Term Downstream Effects of a Dam on a Lowland River Flow Regime: Case Study of the Upper Narew Assessing the Impacts of Climate Change on River Discharge Dynamics in Oueme River Basin (Benin, West Africa) | A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China | Influence of Parameter Sensitivity and Uncertainty on Projected Runoff in the Upper Niger Basin under a Changing Climate | Impacts of Climate Change on the Hydrological Regime of the Danube River and Its Tributaries Using an Ensemble of Climate Scenarios | Improving Hydro-Climatic Projections with Bias-Correction in Sahelian Niger Basin, West Africa | Multi-Basin Modelling of Future Hydrological Fluxes in the Indian Subcontinent | Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan | Coupling Land Use Change Modeling with Climate Projections to Estimate Seasonal Variability in Runoff from an Urbanizing Catchment Near Cincinnati, OhioAssessing the Impact of Climate Change and Extreme Value Uncertainty to Extreme Flows across Great Britain | Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China | Assessing River Low-Flow Uncertainties Related to Hydrological Model Calibration and Structure under Climate Change Conditions | Mean Normalized Force Computation for Different Types of Obstacles due to Dam Break Using Statistical Techniques | Case Study: Effects of a Partial-Debris Dam on Riverbank Erosion in the Parlung Tsangpo River, China A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, CanadaStudy on the Formation and Initial Transport for Non-Homogeneous Debris Flow | Modelling Tools to Analyze and Assess the Ecological Impact of Hydropower Dams | Share your Insights and Learn How Readers Discover Content | Seismic Responses of a Cable-Stayed Bridge with Consideration of Uniform Temperature Load | Parallel Dynamic Analysis of a Large-Scale Water Conveyance Tunnel under Seismic Excitation Using ALE Finite-Element Method A New Finite Element Formulation for Nonlinear Vibration Analysis of the Hard-Coating Cylindrical Shell | 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems | An Asymptotic Theory for the Nonlinear Analysis of Laminated Cylindrical Shells | Thermoelectrically induced nonlinear free vibration analysis of piezo laminated composite conical shell panel with random fiber orientation | The influence of triggers geometry upon the stiffness of cylindrical thin walled tubes | Buckling Analysis of 3D Braided Composite Cylindrical Shells under Axial Loads | Acoustic Emission Behavior of Early Age Concrete Monitored by Embedded Sensors | A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines | Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission | Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique | Detection of failures of adhesively bonded joints using the acoustic emission method | Wood-cement inhibition revisited and development of new wood-cement inhibitory and compatibility indices based on twelve wood species | Functionalization of Sol-Gel Zirconia Composites with Europium Complexes | Mechanical Properties of Sandy Soil Improved with Cement and Nanosilica | Development of a Novel Guided Wave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation | Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method Monitoring of Grouting Compactness in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers


Recycled aggregatesConstruction and demolition wasteThermal performance; Thermal conductivity; Nanofiltration; Tight ultrafiltration; Concentration Polarization; FoulingNatural organic matter; Shredded EPDM rubberRoof membraneLightweight fillRetaining wall backfillStrain transfer analysisClamped fiber Bragg grating (FBG) sensorShear-lag theoryGauge ratioInterlayer thicknessStrain transfer analysisShear-lag theoryGauge RatioInterlayer thicknessSystem EngineeringProject governanceQuality assuranceCivil protectionEmergency managementAugmented realityCrowd-mappingSocial networksSensor networksGeomaticsHydrogeologyConcrete sleeperCrosstieDesign standardHolesWeb openingRailway infrastructureStatic performanceCFD modelingPhysical modelingWave forcesWave pressuresCombined Sewer Overflow pollutionDeep Tunnel EngineeringDongHaoChong basinFlood disasterSWMM modelTomographyHoneycombPre-stressed concrete (PC)Imaging algorithmRay tracingWave propagationStormwater managementGreen roofRainfall-runoffRetentionInter-event timeRC plate strengtheningCFRP stripsPrestressing; Mechanical anchorageGradient anchorageStatic loading testsCross-section analysisNumerical SimulationsBiomassWood ashSugarcane bagasse ashCharacterizationDisaster Risk ManagementGeographic information systemsRemote Sensing;Volunteered Geographic InformationCrowdsourcingCritical infrastructureCrisis mappingCivil protectionHot-melt polyamideHeat treatmentSelf-repairingHot-melt polyamide (HMP)/cement composite systemPhysical adhesionSelf-compacting concrete (SCC)Conventional vibrated concrete (CC)DurabilityBest management practicesBiosolidsManureContamination of ground and surface watersMicrobial source trackingMicroorganismsPathogensRisk assessmentRural systemsWaterborne diseasesWater qualityAcceleration measurementMEMS sensorPrototypeStructural health monitoringVibration measurementVoltage to frequency conversionWireless accelerometerPavementsFunctionality enhancement of industrialized optical fiber sensorsSelf-healing network systemFull-scale monitoringFatigueStructural health monitoring (SHM)Rain-flow counting methodData tracking of tree ringsDigital Signal Processing (DSP)Wireless sensorPVDFWave Energy ConvertersWave energyWave basin experimentsWEC arrays/farms/parksPoint absorberDHI shallow water wave BasinWave energy converterOvertoppingSSGModel testsHuman healthPharmaceuticalsMixture ToxicityRisk AssessmentUncertaintyEngineering EducationInterrelationships between peopleResourcesEnvironment and developmentHands-on projectsHumanitarian development



Media Partners/Collaborator

A huge thanks to all our amazing partners. We couldn’t have a conference without you!

Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker
Conference Speaker


A huge thanks to all our amazing partners. We couldn’t have a conference without you!